The generator matrix

 1  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  1  1 a^6*X a*X  1  1  1  1  1  1  1  1 2*X  1  1  1  1 a*X  1  1  1  0  1  1  1  1  1  1  1  1  1  1  1  1
 0  1  0 a^7*X+1  a a^2 a^7*X+2 a^7*X+a^7  X a^7*X+a a^6 a^6*X+1 a^7*X+a^2 a^7*X+a^3 a^7 X+a^2 a^7*X+a^5  2 a^3 X+a^6 a^5*X+2 X+a a^5*X+1 a^2*X+a^7 a^6*X+a^3 a*X+a^5  1 a^6*X+a^6 a^6*X+a^5 X+a^3 a*X 2*X+2 a^2*X+a^2 X+1 a^2*X+a  1  1 a^7*X+a^5 a^2*X+1 2*X a^6*X+a a^2*X 2*X+a^5 2*X+a^3 a*X+a^6  1 a^2*X+a^5 a^5*X+a^6 a^2*X 2*X+2  1 a*X+a^7 X+1 a^7*X+a^6  1 a^3*X+2 a^6*X+a^7 a^3 a^3*X+a^2 a^5*X+2 a^3*X+1  a a^2*X+a^7 a^6*X+a^2 2*X+a^7 a^3*X+a^5  0
 0  0  1 a^7*X+a^7  a a^6 a^7*X+a^5 a^7*X+2 a^7*X+a^3 a^7*X+a^2 X+a^6 a^3 a^6*X+a^7 a^6*X+a^2 X+a a^5*X+2 a^3*X+1 a*X+1 a^6*X+a^5 a*X+a^2 a^6*X+a^3 2*X a*X+a^5 a^5*X a^5*X+a^6 a^7 a^3*X+a X+1  2 a^5*X+a^3 a^5*X+a^2 a*X+a a^2*X+1 a^7*X a^5*X+a^7 a^3*X+2 a^6 a^2*X+a^2 2*X+1 2*X+2 a^5 a^3*X+a^6 X+a^3 a*X+2 a^2*X+a^5 a*X+a^3 a^2*X+a X+2 2*X+a X+a^7 2*X+1 a*X+a^6 a^3*X+a^6 a^6*X+a^7 a^7*X+a^2 a^3*X 2*X+a^3 2*X a^5*X+a a^7*X+2 a^6*X+a^2 a^5*X+a^6  1 a^3*X+a^5 a^2*X+a^7 2*X+a^6 a^7*X

generates a code of length 67 over F9[X]/(X^2) who�s minimum homogenous weight is 516.

Homogenous weight enumerator: w(x)=1x^0+5256x^516+9792x^517+2592x^518+72x^520+56x^522+49248x^525+47520x^526+10008x^527+1152x^529+304x^531+80784x^534+72576x^535+24696x^536+4608x^538+344x^540+115488x^543+91728x^544+15192x^545+8x^585+16x^603

The gray image is a linear code over GF(9) with n=603, k=6 and d=516.
This code was found by Heurico 1.16 in 33.5 seconds.